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Abstract. The second of this series of two papers is devoted to a theoretical analysis of spatial interaction
between commodity markets. The theoretical framework that we present is referred to as the stochastic
spatial arbitrage model (SSAM); it accounts for most of the empirical regularities observed in the first
paper. Two basic mechanisms are found to be responsible for spatial inter-market interaction, namely (i)
spatial arbitrage and hedging conducted by traders, (ii) spatial correlation between local shocks; the latter
is favored by a similar economic and cultural environment. The SSAM includes both effects and offers
a wide range of predictions about price volatility, trade, price correlations, price differentials. Statistical
tests display a convergent array of evidence in favor of the model. However several predictions cannot be
tested by lack of statistical evidence, a circumstance which shows that yet additional “experimental” work
is required.

PACS. 64.60.Fr Equilibrium properties near critical points, critical exponents – 87.23.Ge Dynamics
of social systems – 89.40.+k Transportation

1 Introduction

In this series of two papers we examine spatial interac-
tions between markets. The empirical evidence was pre-
sented in the first paper, thereafter referred to as arti-
cle 1 [1]. We observed that three mechanisms seem to be
responsible for the correlation between distant markets,
(i) spatial arbitrage conducted by traders, (ii) the fact
that local shocks are spatially correlated, (iii) exchange
of information which tends to synchronize the reactions
of market makers. Empirical observation has shown that
for spot markets (as opposed to futures markets) the two
first effects are predominant. As a result those markets
are characterized by well defined spatial correlation pat-
terns. Thus, as in fluid dynamics, a correlation length l
was defined through the expression ρ(d) = e−d/100l where
ρ(d) denotes the correlation between two markets which
are a distance d apart. In paper I estimates for l have been
obtained both for 19th century and 20th century markets.
Price differentials also exhibit striking regularities.

In the present paper, starting from a reasonable as-
sumption about the behavior of traders, we set up a theo-
retical framework which not only explains the above men-
tioned regularities but also offers several predictions about
seemingly unrelated phenomena such as volume of trade
or price volatility. The broad range of its predictions is a
distinctive feature of the SSAM.

The paper proceeds as follows. In the next section we
investigate in detail the two market-case. In particular

a e-mail: roehner@lpthe.jussieu.fr

we examine the relationship between correlation, volatility
and trade with respect to transport cost; we also discuss
the impact of possible correlation between local shocks.
The two-market case serves as a prototype of more compli-
cated cases. Of particular interest is the case of an infinite
chain of markets. In Section 3 we confront the theoretical
predictions with empirical evidence.

2 The stochastic spatial arbitrage model
(SSAM)

Microeconomic spatial arbitrage models were popular in
the 1960s and 1970s. A bibliographical discussion can be
found in [2,3] (or in [4], Chap. 3). These models had two
drawbacks however: they were deterministic and nonlin-
ear. Nonlinearity was (as shown below) an unnecessary
complication which prohibited analytical insight; even nu-
merical solution turned out to be laborious (see in this
respect [5]). Furthermore the deterministic character of
these models limited their ability to make contact with
statistical evidence; most often they were tested on simu-
lated rather than on actual data. There were (at least) two
reasons for this shortcoming, (i) in a deterministic frame-
work notions such as price correlations or volatility which
are so important statistically simply cannot be defined.
(ii) A number of crucial variables such as transport costs,
excess-supply or trade are highly fluctuating.
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Fig. 1. Mechanism of spatial arbitrage on the example of two markets. The determination of the equilibrium price on one
market is shown in the graphics of the first line. Here we have used fairly realistic power-like supply and demand functions; in
subsequent graphics for the sake of simplicity we use linear functions.The determination of the equilibrium price on a set of
two markets is shown in the second line. If transportation costs are assumed negligible (as is the case for stock market shares
for instance) then the equilibrium condition is very much the same as on a single market, the only difference being that supply
and demand functions are replaced by the excess-supply functions on each market. The equilibrium price is defined by the
intersection of s1 (solid line) and −s2 (dotted line) representing the condition s1 + s2 = 0. When transport cost is equal to t
the equilibrium price is pe. The last line shows the same mechanism in a stochastic framework; the equilibrium prices on each
market are then considered as random variables. As a result the equilibrium price pe becomes a random variable too.
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2.1 The two-market case

Historically the two-market case was important because
it was the only case for which the nonlinear determinis-
tic model could be solved graphically in a straightforward
way. For other cases one had to rely on simulation [6] or
on linear programming [7].

2.1.1 The graphical solution

Although the graphical solution is of little help in deal-
ing with more complicated cases it gives an intuitive un-
derstanding of the mechanism of spatial arbitrage. That
solution is summarized in Figure 1. The first three graph-
ics concern a single market. If S = S(p) and D = D(p)
denote the supply and demand functions, the equilibrium
condition reads: s(p) = S(p)−D(p) = 0; s(p) is referred to
as the excess-supply function. The graphics in the second
line concern the two-market case. Suppose that the equi-
librium prices on market 1 and 2 (without interaction) are
p1 and p2 respectively. When the markets are allowed to
interact there will be a specific amount of goods transfered
from one market to the other; this amount depends upon
the transport cost t. If t = 0 the new equilibrium condition
is given by s1 + s2 = 0. In spite of its simplicity this case
is of interest because it describes the situation of all goods
for which transportation costs are a small percentage of
the price, e.g. shares, gold and silver, diamonds, patents,
softwares, etc.

When the transportation cost is not negligible the new
equilibrium is ruled by the condition:

p1 − p2 = tψ(s) (1.1)

where ψ(s) = Y (s)− Y (−s) and Y (s) denotes the Heavi-
side function (ψ(s) represents the “sign function”). The in-
teraction described by equation (1.1) is of a discontinuous
nature: no exchange takes place until the price differential
becomes equal to t. It is precisely that discontinuity which
makes the problem mathematically difficult. Two simpli-
fications are possible. The function ψ(s) can be replaced
by a continuous approximation; for example the function
ψc(s) = tanh(cs) provides an approximation which can be
made arbitrarily close to ψ(s) when c is large enough. A
second more drastic approximation is to take for ψc(s) a
linear function. However crude, that approximation leads
to sensible results. As a matter of fact a comparison be-
tween the linear and the nonlinear solutions reveals that
their difference is less than 20 percent ([4], p. 101).

2.1.2 Solution of the two-market case

If we introduce the supply and demand functions in the
form:

Si(pi) = γpi − ci, Di(pi) = −βpi + bi, i = 1, 2 (2.1)

then the excess-supply function can be written:

si = Si −Di = a(pi − pi) (2.2)

where: a = γ + β, pi = (ci + bi)/(γ + β), i = 1, 2; the pi
denote the equilibrium prices for each market when the in-
teraction is turned off. As shown in the last three graphics
of Figure 1, in this model the pi are considered as being
random variables, whether independent or dependent.

With this notations the equations corresponding to the
graphical solution outlined in the previous paragraph are
(see Appendix A):{

p1(1 + θ)− p2 = θp1

p2 − p2(1 + θ) = θp2

. (2.3)

The parameter θ = at is the product of the slope of the
excess-supply function by the transportation cost per unit
of weight between the two markets. If we denote by [C] a
given currency, and by [M ] the unit of mass, the dimension
of a is [M ]/[C] while the dimension of t is [C]/[M ]; θ is
therefore a dimensionless parameter; it plays a crucial role
in the SSAM.

From (2.3) it is easy to derive the following solutions:

p1 =
(1 + θ)p1 + p2

2 + θ
, p2 =

p1 + (1 + θ)p2

2 + θ
· (2.4a)

Furthermore trade between the two markets is defined by:

s =
(p2 − p1)a

2 + θ
· (2.4b)

In the next paragraph we examine the implications of (2.4)
for price correlations, price differentials, price volatility
and trade.

2.1.3 Uncorrelated local shocks

First we suppose that the local shocks p1, p2 are uncor-
related and that they have identical distributions. Math-
ematically the basic variables, are the covariances:

cp(i, j) = E(p′i, p
′
j), i, j = 1, 2

where the p′i denote the centered variables (i.e. E(p′i) =
0). For instance the variance is given by: σ2

p =
cp(1, 1) = cp(2, 2) and the correlation by: ρp1p2 =
cp(1, 2)/

√
cp(1, 1)cp(2, 2). Now the centered variables can

be written in the form:

p′1 = Ap′1 +Bp′2; p′2 = Bp′1 +Ap′2.

Thus one has:

σ2
p′1

= σ2
p′2

= σ(A2 +B2), E(p′1, p
′
2) = 2ABσ2

where σ2 denotes the variance of the local shocks. Thus:

ρp1p2 = 2
1 + θ

2 + 2θ + θ2
, σ2

p = σ2 2 + 2θ + θ2

(2 + θ)2
· (2.5)

In order to derive the price differential from the corre-
lation one has to made a specific assumption regarding
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the distribution of prices (and therefore the distribution
of the shocks). Two cases are of special interest, the Gaus-
sian and the log-normal. The Gaussian hypothesis has the
advantage of mathematical simplicity and in this case the
shocks are (as linear combinations) Gaussian too. The log-
normal hypothesis is more realistic for it is well known
that commodity prices are fairly well described by a log-
normal distribution1. In both cases the formulas between
correlations and differentials are given in article 1 [1]. The
two assumptions can in a sense be combined by suppos-
ing that the pi are in fact logarithms of prices instead of
prices; then of course the arbitrage assumption takes a
multiplicative rather than an additive form. In what fol-
lows we mainly restrict ourselves to the Gaussian case.

Using the result given in article 1 [1] one obtains for
the price differential:

E (|p1 − p2|) =
σ√
π

θ

1 + θ/2
·

As a natural definition of trade one can take: T =
(1/2)E(|s|), which leads to: T = (σ/

√
π)[a/(θ + 2)]. The

dependence of the correlation and differential with respect
to θ is shown in Figure 2.

Two limiting cases are of particular interest, the well
integrated market ( θ → 0) and the segmented market
( θ→∞) :

Vanishing transport cost: θ→ 0

rp1p2 ∼ 1− θ2/2→ 1

σp → σ/
√

2

E(|p1 − p2|) ∼ (σ/
√
π)θ → 0

T → (σ/2
√
π)a

Large transport cost: θ→∞
rp1p2 ∼ 2/θ→ 0
σp → σ

E(|p1 − p2|) ∼ (2σ/
√
π)(1− 2/θ)→ 2σ/

√
π

T → 0.

2.1.4 Correlated local shocks

As already observed in article 1 [1], a substantial part of
the synchronization between two markets is due to similar
responses to shared shocks. This idea can be illustrated on

1 For wheat prices see [8]; even for stock prices [9] shows that
the log-normal distribution provides a reasonable approxima-
tion (although actual tails are “fatter” than predicted by the
log-normal. By and large the following “rules of tumb” apply:
for very small samples (. 30) the normal distribution can be
used; for medium-size samples (. 500), the log-normal distri-
bution provides a good approximation; for large (& 1000) and
very large (& 10 000) samples, the role of rare outliers (espe-
cially high price outliers due to speculative bubbles) becomes
important; various specific “candidates” have been proposed
for those cases in recent times.

Fig. 2. Price differential and price correlation for a system of
two markets. The horizontal scale represents the dimensionless
parameter θ = at where a is the slope of the excess-supply func-
tion and t the transport cost; the axis is labeled from right to
left in analogy with the historical evolution of transport rates;
thus the left-hand side of the axis corresponds to the distant
past. Thick line: price differential under the assumption of a
joint Gaussian price distribution; thin line: price differential
under the assumption of a joint log-normal distribution; the
shape of the curve is qualitatively the same in the Gaussian
or in the log-normal case. In the rest of the paper we restrict
ourselves to the Gaussian case for the sake of simplicity. Bro-
ken line: price correlation (vertical right-hand scale); note that,
in contrast to the price differential, the correlation does not
depend upon a specific assumption about the distribution of
prices; it is a “cleaner” measure of interdependence than the
differential.

the two-market case. Suppose that there is a correlation r
between the random variables p1 and p2.

The above formulas then become:

rp1p2 =
r + λ(θ)
1 + rλ(θ)

where λ(θ) = 2
1 + θ

2 + 2θ + θ2

σ2
p = σ2 2(1 + r)(1 + θ) + θ2

(2 + θ)2

E(|p1 − p2|) =
1√
π

θ

1 + θ/2
σ
√

1− r

T =
a√

π(θ + 2)
σ
√

1− r.

Figures 3a and 3b show σp and T as a function of the
correlation r between local shocks.

As before one can easily derive the limiting behavior
of r, σp, E(|p1 − p2|) and T in the cases of a perfectly in-
tegrated market and of a completely segmented market.
The behavior of σp is of particular interest; for a seg-
mented market one has of course: σp = σ, while for a
well integrated market one obtains: σp = σ

√
(1 + r)/2.

Thus, in the latter case the more the shocks are corre-
lated the larger the price volatility; the smallest volatility
obtains when r = −1, i.e. when the two markets are com-
pletely counter-cyclical. Intuitively this makes sense. For
instance if the wheat crops in the United States and in Eu-
rope suffer from bad weather conditions in the same years
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Fig. 3. (a) Standard deviation of prices for two markets as a
function of the correlation between local shocks. When r = −1
the standard deviation is lowest; it increases all the more
quickly if θ is smaller. In other words a market which is well in-
tegrated both in terms of transportation facilities and in terms
of synchronization between business fluctuations is expected
to have a higher standard deviation of prices than a market
well integrated in terms of transport costs but where business
fluctuations are not synchronous. (b) Trade between two mar-
kets as a function of the correlation r between local shocks.
The fact that trade increases when transportation cost (θ) de-
creases could seem obvious. It is not however; for as θ becomes
smaller the price differential diminishes too and with it the in-
centive for traders to trade; in other words for trade to increase
the differential has to fall off slower than θ, which is indeed the
case.

the shocks cannot be smoothened in either of the conti-
nents by importing from or exporting to the other one.

2.2 Chain of markets

While providing an interesting insight the two-market case
cannot give any information about correlation lengths.
The simplest case for which a correlation length can be
computed is an infinite one-dimensional chain of markets
whose markets are supposed to be uniformly spaced.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

Inter-market distance (h)

C
or

re
la

tio
n 

of
 p

ric
es

 o
n 

pa
irs

 o
f m

ar
ke

ts

θ=0.

θ=0.05

θ=0.5

θ=5.

Fig. 4. Correlation of prices as a function of inter-market dis-
tance in an infinite, linear chain. Horizontal scale: number of
intervals between pairs of markets (they are supposed to be
uniformly spaced). The dotted curve corresponds to the case
of a two-dimensional network of markets for θ = 0.5; as can be
seen it is very close to the curve for the one-dimensional case.

Mathematically it is the covariance function of the
prices, namely:

cp(h) = E(p′k+h, p
′
k)

which is the key to the problem. All other variables, and
in particular the correlation length can be easily derived
from cp(h). The calculation which leads to the expression
of cp(h) is detailed in Appendix B. One obtains:

cp(h) =
coshγ e−γh(1 + h tanh γ)

4θ2 sinh3 γ
(2.6a)

where γ is defined by the relation: sinh γ =
√
θ + θ2/4.

The correlation rp(h) = cp(h)/cp(0) has the simpler ex-
pression:

rp(h) = e−γh(1 + h tanhγ). (2.6b)

Figure 4 gives a global view of the behavior of rp(h) with
respect both to h and to θ. For a well integrated set of
markets the correlation length falls off slowly with dis-
tance. Figure 4 also suggests that the properties of a two-
dimensional network of markets are very similar to that
of the one-dimensional chain.

From (2.6b) we can derive the correlation length. As
can be remembered from article 1 one can use two alter-
native definition of the correlation length. If we use the
definition: rp(h) = e−h/L one has to develop expression
(2.6b) to first order with respect to the inter-market dis-
tance h. One gets in this way:

L = 1/(γ − tanh γ) ∼
γ→0

3
γ3
·

The second option is to use the definition δ =
∫∞

0
rp(h)dh

This definition relies on the behavior of rp(h) in the whole
region [0,∞[; it leads to:

δ =
γ + tanh γ

γ2
∼
γ→0

2
γ
·
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As we already pointed out in article 1 [1] it is the first op-
tion which is usually best suited for statistical adjustment.
Thereafter we restrict ourselves to that option.

3 Comparison of the SSAM’s predictions
to statistical evidence

The model offers a fairly wide set of predictions. As it
turns out the predictions which can be tested with accept-
able accuracy are those about the spatial behavior of price
correlations or price differentials. In the first paragraph
we explain why the other predictions are more difficult to
test. In the second paragraph we present the results of a
number of tests.

3.1 Qualitative tests

Table 1 summarizes a total of 11 effects all of which could
in principle be tested if adequate data were available. Un-
fortunately such is not the case; let us briefly explain why.

In Table 1 the dependent variable are either trade or
specific functions (standard deviation, correlation or price
differential) of the prices. Many long price records are
available for commodities such as wheat, sugar, metals,
etc.; data about international trade in such commodities
have also been recorded in all industrial countries. In fact
statistics about overseas trade were among the first to be
collected; in Britain for instance exports and imports fig-
ures are available since 1700 ([10], p. 285). The situation is
much less favorable however for the independent variables
as shown by the following discussion.

Although a (slope of the excess-supply function) and t
(transport cost) come into the model mainly through their
product θ = at one needs separate information for each
variable in order to control that a change in transport cost
is not offset by a change in a. Of these two variables it is
of course a which is the most difficult to estimate. If we
interpret both s and pi as being the logarithms of the cor-
responding items a is the elasticity of excess-supply with
respect to price, that is to say the difference between the
elasticity of supply and the elasticity of demand. Now elas-
ticities are fairly fluctuating quantities which are difficult
to estimate. For wheat for instance, Schultz [11] obtained
estimates for the elasticity of demand ranging from 0.02
to 0.21 for the period 1880-1934. Although transport costs
are somewhat easier to estimate one should bear in mind
that they are extremely dependent upon business fluctu-
ations; doubling of freight rates within a few years is not
uncommon. To make things even worse actual freight rates
data often are withheld by firms and are not made public
(see in this respect [4], p. 80). In short it is difficult to asses
the level of the variable θ even within a 100% margin.

The variance σ of local shocks or their correlation r
are even more difficult to measure. True, some meteoro-
logical factors are well known. For instance it has been
estimated [12] that the correlation length of rainfalls is
of the order of 10 km that is to say at least five times

smaller than the correlation length of wheat prices. But
rainfalls are only one of the many factors that can affect
the demand and supply of wheat.

Is there no way around such obstacles? One possibility
is to select commodities for which one has some kind of
special knowledge about the independent variables. Let us
give some examples. (i) For gold, silver, platinum or dia-
monds it is obvious that transport costs represent only a
negligible fraction of their value. (ii) The price elasticity of
bananas is about 10 times larger than the price elasticity
of sugar: 0.37 against 0.04 ([13], p. 394). Taking into ac-
count such orders of magnitude allows at least qualitative
comparisons.

As an application we consider agricultural commodi-
ties versus mineral commodities. In the wake of the trans-
portation revolution there has been a marked decrease in
the volatility of agricultural commodities in striking con-
trast with what happened for minerals. How could this
difference be accounted for? We argue that there are two
competing effects. On one side the decrease in transport
rates tended to smoothen out price fluctuations; on the
other side, at least as far as non-meteorological factors are
concerned, the growing globalization of the world econ-
omy made local supply/demand shocks to become more
correlated. One crucial difference between agricultural and
mineral materials is precisely the fact that the latter do
not depend upon meteorological factors. This reasoning
is illustrated schematically in Figure 5 by a comparison
between the volatility of gold and of wheat.

Gold prices are known to be more volatile than wheat
prices; everyone remembers the huge price peaks that oc-
curred in 1968 and 1979 (for more details see Ref. [13],
p. 395). Wheat in contrast has had in the 20th century a
fairly low volatility. Yet, according to equation (2.5) one
would expect the opposite to be true. Indeed, under the as-
sumption that the other parameters are the same, a com-
modity characterized by a low transport cost should have
a low volatility too. The solution of this paradox has to
be found in the fact that the other parameters, namely σ
and r, are not the same. Little can be said about σ, but
there are good reasons to believe that r is larger for the
gold market than for the wheat market. Remember that
the production of gold is concentrated in a few countries
and is in the hands of a small number of companies. As
shown in Figure 5 the impact of a larger r can be more
important than the transport cost effect.

3.2 Quantitative tests

There are only two cases in Table 1 where both the depen-
dent and the independent variable can be estimated with
reasonable accuracy, namely cases 2c and 3c for correla-
tion and price differentials as a function of inter-market
distance. These are the two tests that we discuss now.

3.2.1 Correlation length

As we have seen in article 1 (Figs. 4a, 4b) the price corre-
lation is usually fairly close to one. As a result it can be
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Table 1. Summary of the predictions of the stochastic spatial arbitrage model (SSAM).

Dependent variable Independent variable Phenomenon

1a Standard deviation θ = at Decrease of volatility when transport costs

(σp) become smaller or when the commodity

becomes less elastic

1b r Increase of volatility with correlation of

local shocks

1c σ Increase of volatility with standard

deviation of local shocks

2a Correlation of prices θ = at Increase of correlation when

(rp) transport costs become smaller or when the

commodity becomes less elastic

2b r Increase of correlation when correlation of

local shocks grows

2c h Decrease of correlation for larger inter-market

distances

3a Price differential θ = at Decrease of price differentials when

(Dp) transport costs become smaller or when the

commodity becomes less elastic

3b r Decrease of differentials when correlation

of local shocks grows

3c h Increase of differentials for larger inter-market

distances

4a Trade θ = at Increase of trade when transport costs

(T ) become smaller or when the commodity

becomes less elastic

4b r Decrease of trade when correlation of local

shocks grows

developed to first order:

rp(h) = 1−hγ3/3 +O(h2) = 1− d/(100l) +O((d/100l)2).

Remember that h is the number of inter-market intervals;
thus, in order to make contact between the two expres-
sions one has to introduce the average spacing,∆, between
markets; then:

d

100l
=

d/∆

100 l/∆
=

h

100 l/∆
·

Taking into account that: θ ∼
θ→0

γ2 one obtains:

θ '
(

1
33 (l/∆)

)2/3

·

As a preliminary step one has therefore to estimate the av-
erage inter-market spacing. There are two different meth-

ods. (i) In the first method we assume that the (real) mar-
kets are more or less uniformly spaced; then knowing the
total number of markets and the area of the region it is a
simple matter to derive the distance between neighboring
markets. Let us see how the procedure works on two exam-
ples. First we consider 19th century France. In the middle
of the 19th century wheat prices were recorded in about
500 markets, which means that a wheat market was held
(once or twice a week) in all towns of some importance;
more precisely the figure of 500 markets corresponds to
all towns with a population over 5000 (Census of 1851,
Annuaire Statistique de la France 1960). Now if we
schematize the territory of France by a square with a 700
km side, one gets a spacing ∆ of 32 km. Next we consider
the United States; in this case we used state level price
data. But since there are a number of states with a fairly
large area and almost no wheat production we left aside
Alaska, Colorado, Nevada, New Mexico and Utah. This
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Table 2. Correlation length for commodity markets: fit of parameter θ.

Commodity Region Year Number Periodicity Fit of parameter

of markets θ [×10−2]

Wheat Bavaria 1829 9 M 13± 7

Wheat France (center) 1873 11 M 9.3 ± 1.6

Wheat France 1873 12 M 7.9 ± 1.4

Wheat France (ports) 1873 10 M 3.8 ± 0.4

Wheat United States 1970 31 A 4.6 ± 0.2

Potato Prussia 1837 10 A 20.8 ± 2.2

Potato United States 1970 35 A 14.0 ± 0.5

Notes: This table parallels Table 3 of article 1. The dimensionless parameter θ is
the model’s most important parameter; it is equal to the product at of the slope of
excess-supply by the transport cost. The fit of θ is based on the assumption of an
average inter-market distance of 50 km for nineteenth century wheat markets and of
170 km for twentieth century wheat markets. The dates refer to the middle of the
interval used in the calculation of the correlation.

Fig. 5. Price volatility with respect to transport cost. The
horizontal scale represents the dimensionless parameter θ = at
where a is the slope of the excess-supply function and t the
transport cost; the axis is labeled from right to left in anal-
ogy with the historical evolution of transport rates; three dates
1800, 1870 and 1970 provide approximate landmarks. The dot-
ted curves are theoretical predictions, each for a different cor-
relation (ranging from 0.0 to 0.99) between local shocks; the
downward shape of these curves show the stabilization effect
decreasing transport rates have on price fluctuations. The solid
curves schematize possible evolution paths either for agricul-
tural and for mineral materials. The squares represent average
empirical estimates for grain (wheat and rye). Gold and silver
provide remarkable examples of materials which, in spite of
negligible transport costs (with respect to value) display huge
price fluctuations; remember in this respect the twenty-fold
increase of silver prices in the late 1970s.

leads to: ∆ ∼ 390 km. Such a figure can only be a rough
average of course because in this case the markets are not
uniformly spaced; western states, for instance, are much
larger than New England states. (ii) By fitting the whole

price differential function one is able to estimate more
than one parameter. This method which is implemented
in the next paragraph gives estimates for ∆ which are
consistent with the orders of magnitude obtained through
the first method; one gets ∆ = 43 km for France, and
∆ = 170 km for the United States.

In Table 2 we consider a number of cases which parallel
those examined in Table 3 of article 1 [1]. The goodness
of fit of these least-square fits can be judged on the ba-
sis of two criteria. Firstly error bars; they are on average
of the order of 10%; secondly the estimates can be con-
fronted with what is known from the general evolution of
transport costs; thus one expects the following results. (i)
For France (center) and France (whole country) one gets
close estimates; this makes sense since both a and t should
indeed be similar, (ii) for France (ports) θ is substantially
smaller than in the two previous case; this again makes
sense since a is the same either for ports or for other mar-
kets whereas t is likely to be smaller for ports. (iii) For
Bavaria (1829) θ is larger than for France (1875); this is
sensible since it is reasonable to assume that a did not
change much before the end of the 19th century when
wheat became a less essential factor in the people’s diet;
θ then is proportional to t which, as we know, decreased
dramatically between 1829 and 1875. Cross comparisons
between results for the 19th century and for the 20th cen-
tury are more difficult because we do not know how a
changed.

3.2.2 Price differentials

As far as price differentials are concerned there are two
possible options, (i) if data are available only for a few
markets (say less than 20) it would be unrealistic to at-
tempt a nonlinear fit of the whole curve. In that case we
restrict ourselves to a linear fit of the small-distance sec-
tion of the curve. (ii) If the sample of markets is large
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(a) (b)

Fig. 6. (a) Wheat price differentials as a function of inter-market distance in the United States 1951-1981. Solid line: ob-
servations; dashed line: prediction of the stochastic spatial arbitrage model (SSAM). Horizontal scale: distance in kilometers.
Vertical scale: differentials in cent/bushel. The sample includes 34 states; in each distance interval differentials are averaged
over 30 market pairs. The solid curve is an average over the years 1951, 1961, 1971, 1981. The theoretical curve corresponds
to the parameters given in Table 3b (case 4) with σ expressed in cent/bushel. Source: Langley et al. [16]. (b) Potato price
differential as a function of inter-market distance in the United States 1951-1981. Solid line: observations; dashed line: predic-
tion of the stochastic spatial arbitrage model (SSAM). Horizontal scale: distance in kilometers. Vertical scale: differentials in
cent/centweight. The sample includes 35 states; in each distance interval differentials are averaged over 30 market pairs. The
solid curve is an average over the years 1951, 1961, 1971, 1981. The theoretical curve corresponds to the parameters given in
Table 3b (case 5) with σ expressed in cent/centweight. Source: Lucier et al. [17].

enough (say more than 30) a nonlinear fit of the whole
curve becomes possible; it provides estimates for all the
parameters entering into the SSAM.

Linear fit for small distances

If v denotes the slope of the regression between ∆2(|pi −
pj |) against inter-market distances then, as is easy to see
from the formulas for the chain of markets, the parameter
θ can be estimated as:

θ =
(

3π
4
v∆

)2/3

(1/σp)4/3.

∆ again denotes the average spacing between markets. We
use here the same estimates as in the previous paragraph.
If a sufficiently long price series is available one can of
course estimate σp directly. Alternatively one can use the
following reasoning: it is known [8] that for nineteenth cen-
tury wheat price series the coefficient of variation σp/m is
approximately equal to 0.3. Thus σp can merely be derived
from the average price m.

Remark

The previous procedure can be applied either to the differ-
ences of the prices or to the differences of the logarithms
of the prices; theoretical arguments can be given in favor
of each of the options; both options have been tried and
they lead to similar results.

Are the estimates in Table 3a consistent one with an-
other? Estimates for case 2 and especially for case 3 are

substantially higher than the others. This is not surpris-
ing, however, for these estimates concern short distances
for which shipping was probably carried out by small
traders or even by the farmers themselves. These ship-
pings did not benefit from the economies of scale that
apply to the transportation of large quantities on longer
distances.

Nonlinear fit

A comparison between observations and the fitted theoret-
ical curve is provided in Figures 6a and 6b. The estimated
values of the three parameters are given in Table 3b. We
observe that the estimates for θ are in agreement with
those obtained previously and with what intuition would
suggest.

A special comment is in order for France 1908 (Fig. 5
of [1]). This curve has an overall shape that is drastically
different from the one predicted theoretically. The concav-
ity is downward instead of being upward; in other words
the theoretical curve is of the y =

√
x type while the 1908

curve is of the y = x2 type. Note that this is not an iso-
lated case but rather the result of a steady evolution that
goes back to the middle of the nineteenth century: in 1825
the second derivate is negative (as predicted), in 1858 it is
almost equal to zero, and in 1908 it is positive. The spe-
cific reason of that discrepancy remains an open question.
It would of course be easy to list several effects which the
model did not take into account; however it would be more
helpful to know about other cases where the same shape
is observed.
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Table 3. (a) Price differentials for commodity markets: fit of parameter θ, (b) estimation of the SSAM on price differentials as
a function of inter-market distance.

(a)

Commodity Region Year Number Distance Fit of parameter θ

of markets range [km]

Option 1 Option 2 Goodness

Diff. of Diff. of of fit

prices logs of

prices

1 Wheat Bavaria 1815 10 < 250 0.41 0.41 0.67

1841 10 < 250 0.49 0.42 0.66

1855 10 < 250 0.13 0.12 0.37

2 Wheat Côtes 1855 7 < 100 0.44 0.34 0.43

d’Armor

3 Wheat Nord 1855 7 < 100 0.80 0.65 0.83

4 Cotton U.S. 1948 9 < 1100 0.037

1957 < 1100 0.057

Notes: The dimensionless parameter θ is the model’s most important parameter; it is equal to the
product at of the slope of excess-supply by the transport cost. It has been computed here from the
price differentials and on the basis of an average inter-market distance of 40 km for cases 1, 2, 3 and
of 100 km for case 4. “Côtes d’Armor” and “Nord” are two districts in France, the first in Brittany,
the second in the region of Lille. The goodness of fit is estimated from the correlation between the
square of the differentials and inter-market distance.

(b)

Commodity Markets Parameters Goodness of fit

Region Year Number θ σ ∆ [km] η2 k χ2

of markets

1 Wheat France 1825 51 0.10 743 43 0.55 40 41

2 Wheat France 1908 51 no adjustment possible

3 Wheat U.S. 1888 25 0.15 69 155 0.75 10 19.3

4 Wheat U.S. 1966 34 0.030 50 303 0.82 18 7.6

5 Potato U.S. 1966 35 0.13 216 170 0.74 19 10.8

Notes: θ is the product of the excess-supply slope by transportation cost; σ is the standard deviation
of local shocks; ∆ is the average spacing between markets. η2 is the index of curvilinear correlation;
k denotes the number of subdivisions of the distance range. The different values of σ cannot be
directly compared because they are expressed in different currencies.

4 Conclusion

From a large collection of cases covering both the 19th
and the 20th century there is convergent evidence in fa-
vor of the SSAM. One of the most promising features of
the theory is the fact that if offers a wide range of pre-
dictions. Unfortunately, because of the lack of adequate
empirical data we had to restrict ourselves to two types
of predictions out of a total of about ten. Therefore it is
clear that the first and most urgent task is to carry out
more empirical work. Of immense help would be a sort of
“Commodity handbook” (similar to the “Physical hand-

books”) where one would find all available “experimen-
tal” data about prices, trade, demand and supply elastic-
ities, transport costs, storage costs, etc.; for the statistical
records that are too large (as is for instance the case for
high frequency price records) the data themselves could
be replaced by the reference to an easily accessible (and
lasting!) Internet source.

Appendix A: The two-market case

For a physicist the simplest approach is to look at the two-
market case as being an electrical network. That electrical
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analogy is illustrated in Figure 7. The analogy goes as
follows

market 1, market 2 ←→ node 1, node 2
prices ←→ opposite of voltages (p′i)
trade ←→ current i
arbitrage condition ←→ gate ψ
stochastic shocks ←→ stochastic current generator.

The gate ψ allows current to go from node 1 to node 2
only if the absolute value of the voltage between 1 and 2
is higher than the transport cost. In the linear approxima-
tion the gate simply becomes a resistance. From the basic
equations:

ji = r−1p′i + ai j1 = −i j2 = i ti = p′1 − p′2
where r−1 = γ + β ai = (γ + β)pi p′i = −pi

where the p′i denote the voltages, one gets the equa-
tions (2.3).

Appendix B: The linear chain of markets

The equations for a linear chain of markets are obtained
very much in the same way as in the two-market case.
They read:

(2 + θ)pk − pk−1 − pk+1 = θpk
k = . . . ,−1, 0, 1, . . . (B.1)

In this equation the pk are independent, identically dis-
tributed random variables. Equation (B.1) is what is called
a spatial second-order autoregressive process (a general
introduction to spatial autoregressive processes can be
found in Chap. 7 of [4]). The boundary-stationarity con-
ditions are such that the p±∞ are bounded. Once sta-
tionarity is ensured one knows that the solution become
independent of the actual values of p−∞ and p∞. If (B.1)
is solved through Fourier transforms the stationary solu-
tion is selected ipso facto. Technically this goes as follows.

The first step consists in finding the Green’s function
Gk i.e. the solution of:

Gk − a(Gk−1 +Gk+1) = δx,0

where a =
1

2 + θ
· (B.2)

To this aim we multiply both sides of (B.2) by e−ikω and
sum over k. Next we introduce the Fourier series:

G̃(ω) =
∞∑

k=−∞
Gke−ikω.

1/(γ+β)
r=

1/(γ+β)
r=

2

Market 1 Market 2
i

j j1 2

ψ

a = b + c a = b + c1 1 1 22

Fig. 7. Electrical analogue of a system of two markets. In the
linear approximation the device ψ becomes a resistance. One
of the consequence of linearity is the fact that the expectation
of the prices does not depend on the statistical properties of
the exogenous local shocks and in particular on their covari-
ance matrix. Thus, in the linear approximation no price bubble
can be brought about by long-range correlation between local
shocks. The analysis of such a time dependent behavior is left
for a subsequent paper.

G̃(ω) is given by:

G̃(ω) =
1

1− a(e−iω + eiω)
·

The coefficient Gk are of course expressed as:

Gk =
1

2π

∫ π

−π
G̃(ω)eikωdω.

Substituting, one is lead to the following alternative
expressions:

Gk =
1
π

∫ π

0

cos kθ
1− 2a cos θ

(B.3a)

Gk =
1

2iπ

∫
C

zk−1

1− a(1/z + z)
dz C : unit circle. (B.3b)

The integral (B.3a) can be obtained from a result of Grad-
shteyn ([14], p. 366, 3.613 (1)). Alternatively the integral
(B.3b) can be computed directly using the theorem of
residues. Here, however we are interested in the covariance
function of the prices rather than in the Green’s function.
As will be seen the former can be derived from the latter.
Using the fundamental property of the Green’s function
the covariance function cp(h) = E(pkpk+h) can be written
(we proceed formally, for a more rigorous derivation see
[15]):

cp(h) =
∑
i,j

Gk−iGk+h−jE(pipj).

If the pi are uncorrelated white noise: E(pipj) = δi,j .
In this case cp(h) can be expressed as the convolution



200 The European Physical Journal B

product of Gj and Ĝj = G−j ; thus the Fourier transform
of cp(h) is given by: c̃(ω) = G̃(−ω)G̃(ω) = |G̃(ω)|2, and
going back to the inverse Fourier transform one obtains:

cp(h) = F−1[G̃(−ω)G̃(ω)] =
1

2π

∫ π

−π
|G̃(ω)|2eihωdω.

Therefore:

cp(h) =
1
π

∫ π

0

coshθ
(1− 2a cos θ)2

·

The integral can be obtained through the theorem of
residues; alternatively it can be derived by differentiation
of Gh; one obtains in this way:

cp(h) =
(
√

1 + α2 − α)h(
√

1 + α2 + hα)
4α3

θ2 σ2, (B.4)

θ = at, α =

√
θ +

θ2

4
·

From (B.4) a simple derivation leads to (2.6a).
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